Implement replicate transfers

This commit is contained in:
Emilia Allison 2023-05-13 19:12:16 -04:00
parent b4faca150d
commit 0f8eed0aae
Signed by: emilia
GPG Key ID: 7A3F8997BFE894E0
1 changed files with 45 additions and 8 deletions

View File

@ -56,15 +56,15 @@ impl TransferRegion<'_> {
let mut wells = Vec::<(u8,u8)>::new(); let mut wells = Vec::<(u8,u8)>::new();
for well in source_wells { for well in source_wells {
if let Some(dest_well) = map(well) { if let Some(mut dest_wells) = map(well) {
wells.push(dest_well) wells.append(&mut dest_wells);
} }
} }
return wells; return wells;
} }
pub fn calculate_map(&self) -> Box<dyn Fn((u8,u8)) -> Option<(u8,u8)> + '_> { pub fn calculate_map(&self) -> Box<dyn Fn((u8,u8)) -> Option<Vec<(u8,u8)>> + '_> {
// By validating first, we have a stronger guarantee that // By validating first, we have a stronger guarantee that
// this function will not panic. :) // this function will not panic. :)
if let Err(msg) = self.validate() { if let Err(msg) = self.validate() {
@ -75,6 +75,7 @@ impl TransferRegion<'_> {
let source_wells = self.get_source_wells(); let source_wells = self.get_source_wells();
let il_dest = self.interleave_dest.unwrap_or((1,1)); let il_dest = self.interleave_dest.unwrap_or((1,1));
let il_source = self.interleave_source.unwrap_or((1,1));
let source_corners: ((u8,u8),(u8,u8)) = self.source_region.try_into() let source_corners: ((u8,u8),(u8,u8)) = self.source_region.try_into()
@ -83,26 +84,62 @@ impl TransferRegion<'_> {
// This map is not necessarily injective or surjective, // This map is not necessarily injective or surjective,
// but we will have these properties in certain cases. // but we will have these properties in certain cases.
// If the transfer is not a pooling transfer (interleave == 0) // If the transfer is not a pooling transfer (interleave == 0)
// then we *will* have injectivity. // and simple then we *will* have injectivity.
// Non-replicate transfers: // Non-replicate transfers:
match self.dest_region { match self.dest_region {
Region::Point((x,y)) => return Box::new(move |(i,j)| { Region::Point((x,y)) => return Box::new(move |(i,j)| {
if source_wells.contains(&(i,j)) { if source_wells.contains(&(i,j)) {
let il_source = self.interleave_source.unwrap_or((1,1));
// Validity here already checked by self.validate() // Validity here already checked by self.validate()
Some(( Some(vec!((
x + i.checked_sub(source_ul.0).expect("Point cannot have been less than UL") x + i.checked_sub(source_ul.0).expect("Point cannot have been less than UL")
.checked_div(il_source.0.abs() as u8).expect("Source interleave cannot be 0") .checked_div(il_source.0.abs() as u8).expect("Source interleave cannot be 0")
.mul(il_dest.0.abs() as u8), .mul(il_dest.0.abs() as u8),
y + j.checked_sub(source_ul.1).expect("Point cannot have been less than UL") y + j.checked_sub(source_ul.1).expect("Point cannot have been less than UL")
.checked_div(il_source.1.abs() as u8).expect("Source interleave cannot be 0") .checked_div(il_source.1.abs() as u8).expect("Source interleave cannot be 0")
.mul(il_dest.1.abs() as u8), .mul(il_dest.1.abs() as u8),
)) )))
} else { None } } else { None }
}), }),
Region::Rect(c1, c2) => return Box::new(move |(i,j)| { Region::Rect(c1, c2) => return Box::new(move |(i,j)| {
None // Because of our call to validate,
// we can assume that our destination region contains
// an integer number of our source regions.
if source_wells.contains(&(i,j)) {
// Find points by checking congruence class
let possible_destination_wells = create_dense_rectangle(&c1, &c2);
let (ds1,ds2) = standardize_rectangle(&c1, &c2);
let (s1,s2) = standardize_rectangle(&source_corners.0, &source_corners.1);
let dims = (s2.0.checked_sub(s1.0).unwrap()+1, s2.1.checked_sub(s1.1).unwrap()+1);
let relative_ij = (i.checked_sub(source_ul.0).expect("Point cannot have been less than UL"),
j.checked_sub(source_ul.1).expect("Point cannot have been less than UL"));
/*
println!("{} % {} == {}", i, dims.0, i*il_dest.0.abs() as u8 % dims.0);
for a in ds1.0..=ds2.0 {
for b in ds1.1..=ds2.1 {
println!("({},{}): {} % {} == {}", a, b,
a.checked_sub(ds1.0).unwrap()+1, dims.0,
(a.checked_sub(ds1.0).unwrap()+1) % dims.0);
}
}
for a in ds1.0..=ds2.0 {
for b in ds1.1..=ds2.1 {
println!("({},{}): {} % {} == {}", a, b,
a.checked_sub(ds1.0).unwrap()+1, il_dest.0.abs() as u8,
(a.checked_sub(ds1.0).unwrap()+1) % il_dest.0.abs() as u8);
}
}
*/
Some(possible_destination_wells.into_iter()
.filter(|(x,y)| i*il_dest.0.abs() as u8 % dims.0
== (x.checked_sub(ds1.0).unwrap() + 1) % dims.0 &&
j*il_dest.1.abs() as u8 % dims.1
== (y.checked_sub(ds1.1).unwrap() + 1) % dims.1)
.filter(|(x,y)| (x.checked_sub(ds1.0).unwrap()) % il_dest.0.abs() as u8 == 0 &&
(y.checked_sub(ds1.1).unwrap()) % il_dest.1.abs() as u8 == 0)
.collect())
} else { None }
}) })
} }
} }