plate-tool/src/data/transfer_region.rs

442 lines
18 KiB
Rust

use serde::{Serialize, Deserialize};
use super::plate::Plate;
#[derive(Clone, Copy, PartialEq, Eq, Serialize, Deserialize, Debug)]
pub enum Region {
Rect((u8, u8), (u8, u8)),
Point((u8, u8)),
}
impl Default for Region {
fn default() -> Self {
Region::Point((1,1))
}
}
impl TryFrom<Region> for ((u8, u8), (u8, u8)) {
type Error = &'static str;
fn try_from(region: Region) -> Result<Self, Self::Error> {
if let Region::Rect(c1, c2) = region {
Ok((c1, c2))
} else {
// Should consider returning a degenerate rectangle here instead
Err("Cannot convert this region to a rectangle, it was a point.")
}
}
}
#[derive(PartialEq, Eq, Clone, Copy, Serialize, Deserialize, Debug)]
pub struct TransferRegion {
pub source_plate: Plate,
pub source_region: Region, // Even if it is just a point, we don't want corners.
pub dest_plate: Plate,
pub dest_region: Region,
pub interleave_source: (i8, i8),
pub interleave_dest: (i8, i8),
}
impl Default for TransferRegion {
fn default() -> Self {
TransferRegion {
source_plate: Plate::default(),
source_region: Region::default(),
dest_plate: Plate::default(),
dest_region: Region::default(),
interleave_source: (1,1),
interleave_dest: (1,1)
}
}
}
impl TransferRegion {
pub fn get_source_wells(&self) -> Vec<(u8, u8)> {
match self.source_region {
Region::Rect(c1, c2) => {
let mut wells = Vec::<(u8, u8)>::new();
let (ul, br) = standardize_rectangle(&c1, &c2);
let (interleave_i, interleave_j) = self.interleave_source;
// NOTE: This will panic if either is 0!
// We'll reassign these values (still not mutable) just in case.
// This behaviour shouldn't be replicated for destination wells
// because a zero step permits pooling.
let (interleave_i, interleave_j) = (i8::max(interleave_i, 1), i8::max(interleave_j, 1));
for i in (ul.0..=br.0).step_by(i8::abs(interleave_i) as usize) {
for j in (ul.1..=br.1).step_by(i8::abs(interleave_j) as usize) {
// NOTE: It looks like we're ignoring negative interleaves,
// because it wouldn't make a difference here---the same
// wells will still be involved in the transfer.
wells.push((i, j))
}
}
return wells;
},
Region::Point(p) => return vec![p]
}
}
pub fn get_destination_wells(&self) -> Vec<(u8, u8)> {
let map = self.calculate_map();
let source_wells = self.get_source_wells();
let mut wells = Vec::<(u8, u8)>::new();
log::debug!("GDW:");
for well in source_wells {
if let Some(mut dest_wells) = map(well) {
log::debug!("Map {:?} to {:?}", well, dest_wells);
wells.append(&mut dest_wells);
}
}
log::debug!("GDW END.");
return wells;
}
pub fn calculate_map(&self) -> Box<dyn Fn((u8, u8)) -> Option<Vec<(u8, u8)>> + '_> {
// By validating first, we have a stronger guarantee that
// this function will not panic. :)
log::debug!("Validating: {:?}", self.validate());
if let Err(msg) = self.validate() {
eprintln!("{}", msg);
eprintln!("This transfer will be empty.");
return Box::new(|(_, _)| None);
}
log::debug!("What is ild? {:?}", self);
let source_wells = self.get_source_wells();
let il_dest = self.interleave_dest;
let il_source = self.interleave_source;
let source_corners: ((u8, u8), (u8, u8)) = match self.source_region {
Region::Point((x,y)) => ((x,y),(x,y)),
Region::Rect(c1,c2) => (c1,c2)
};
let (source_ul, _) = standardize_rectangle(&source_corners.0, &source_corners.1);
// This map is not necessarily injective or surjective,
// but we will have these properties in certain cases.
// If the transfer is not a pooling transfer (interleave == 0)
// and simple then we *will* have injectivity.
// Non-replicate transfers:
match self.dest_region {
Region::Point((x, y)) => {
return Box::new(move |(i, j)| {
if source_wells.contains(&(i, j)) {
// Validity here already checked by self.validate()
Some(vec![(
x + i
.checked_sub(source_ul.0)
.expect("Point cannot have been less than UL")
.checked_div(il_source.0.abs() as u8)
.expect("Source interleave cannot be 0")
.mul(il_dest.0.abs() as u8),
y + j
.checked_sub(source_ul.1)
.expect("Point cannot have been less than UL")
.checked_div(il_source.1.abs() as u8)
.expect("Source interleave cannot be 0")
.mul(il_dest.1.abs() as u8),
)])
} else {
None
}
});
}
Region::Rect(c1, c2) => {
return Box::new(move |(i, j)| {
if source_wells.contains(&(i, j)) {
let possible_destination_wells = create_dense_rectangle(&c1, &c2);
let (d_ul, d_br) = standardize_rectangle(&c1, &c2);
let (s_ul, s_br) = standardize_rectangle(&source_corners.0, &source_corners.1);
let s_dims = (
s_br.0.checked_sub(s_ul.0).unwrap() + 1,
s_br.1.checked_sub(s_ul.1).unwrap() + 1,
);
let d_dims = (
d_br.0.checked_sub(d_ul.0).unwrap() + 1,
d_br.1.checked_sub(d_ul.1).unwrap() + 1,
);
let N_s = ( // Number of used source wells
(s_dims.0 + il_source.0.abs() as u8 - 1).div_euclid(il_source.0.abs() as u8),
(s_dims.1 + il_source.1.abs() as u8 - 1).div_euclid(il_source.1.abs() as u8),
);
let D_per_replicate = ( // How many wells are used per replicate?
(N_s.0 * (il_dest.0.abs() as u8))
// Conditionally subtract one to ignore the trailing interleave well
.saturating_sub(if il_dest.0.abs() > 1 {1} else {0}),
(N_s.1 * (il_dest.1.abs() as u8))
.saturating_sub(if il_dest.1.abs() > 1 {1} else {0}),
);
let count = ( // How many times can we replicate?
d_dims.0.div_euclid(D_per_replicate.0),
d_dims.1.div_euclid(D_per_replicate.1),
);
let i = i.saturating_sub(s_ul.0).saturating_div(il_source.0.abs() as u8);
let j = j.saturating_sub(s_ul.1).saturating_div(il_source.1.abs() as u8);
log::debug!("s_dims: {:?}, N_s: {:?}", s_dims, N_s);
Some(
possible_destination_wells
.into_iter()
.filter(|(x, _)| {
x.checked_sub(d_ul.0).unwrap()
% (N_s.0 * il_dest.0.abs() as u8) // Counter along x
== ((il_dest.0.abs() as u8 *i))
% (N_s.0 * il_dest.0.abs() as u8)
})
.filter(|(_, y)| {
y.checked_sub(d_ul.1).unwrap()
% (N_s.1 * il_dest.1.abs() as u8) // Counter along u
== ((il_dest.1.abs() as u8 *j))
% (N_s.1 * il_dest.1.abs() as u8)
})
.filter(|(x,y)| {
// How many times have we replicated? < How many are we allowed
// to replicate?
x.checked_sub(d_ul.0).unwrap().div_euclid(N_s.0 * il_dest.0.abs() as u8)
< count.0 &&
y.checked_sub(d_ul.1).unwrap().div_euclid(N_s.1 * il_dest.1.abs() as u8)
< count.1
})
.collect(),
)
} else {
None
}
});
}
}
}
pub fn validate(&self) -> Result<(), &'static str> {
// Checks if the region does anything suspect
//
// If validation fails, we pass a string to show to the user.
//
// We check:
// - Are the wells in the source really there?
// - In a replication region, do the source lengths divide the destination lengths?
// - Are the interleaves valid?
let il_source = self.interleave_source;
let il_dest = self.interleave_dest;
match self.source_region {
Region::Point(_) => return Ok(()), // Should make sure it's actually in the plate, leave for
// later
Region::Rect(s1, s2) => {
// Check if all source wells exist:
if s1.0 == 0 || s1.1 == 0 || s2.0 == 0 || s2.1 == 0 {
return Err("Source region is out-of-bounds! (Too small)");
}
// Sufficient to check if the corners are in-bounds
let source_max = self.source_plate.size();
if s1.0 > source_max.0 || s2.0 > source_max.0 {
return Err("Source region is out-of-bounds! (Too tall)");
}
if s1.1 > source_max.1 || s2.1 > source_max.1 {
log::debug!("s1.1: {}, max.1: {}", s1.1, source_max.1);
return Err("Source region is out-of-bounds! (Too wide)");
}
// Check that source lengths divide destination lengths
/* This section is disabled because it's not
* strictly necessary to have this property (divisibility)
match &self.dest_region {
Region::Point(_) => (),
Region::Rect(d1, d2) => {
// If we consider interleaves, it's slightly more
// complicated to compute the true dimensions of
// each region.
// (dim)*(il) - (il - 1)
let dest_dim_i = u8::abs_diff(d1.0, d2.0)+1;
let dest_dim_j = u8::abs_diff(d1.1, d2.1)+1;
let source_dim_i = ((il_source.0.abs() as u8) * u8::abs_diff(s1.0, s2.0))
.checked_sub(il_source.0.abs() as u8 - 1)
.expect("Dimension is somehow negative?")
+ 1;
let source_dim_j = ((il_source.1.abs() as u8) * u8::abs_diff(s1.1, s2.1))
.checked_sub(il_source.1.abs() as u8 - 1)
.expect("Dimension is somehow negative?")
+ 1;
if dest_dim_i % (source_dim_i+il_dest.0.abs() as u8) != 0 {
eprintln!("{} % {} = {}", dest_dim_i,
source_dim_i+il_dest.0.abs() as u8,
dest_dim_i % (source_dim_i+il_dest.0.abs() as u8));
return Err("Replicate region has indivisible height!");
}
if dest_dim_j % (source_dim_j+il_dest.1.abs() as u8) != 0 {
eprintln!("{} {}", source_dim_j, source_dim_j);
return Err("Replicate region has indivisible width!");
}
}
}
*/
}
}
if il_source.0 == 0 || il_dest.1 == 0 {
return Err("Source interleave cannot be zero!");
}
// Check if all destination wells exist:
// NOT IMPLEMENTED
// Should *not* happen in this function---otherwise
// we'd get a nasty recursive loop.
return Ok(());
}
}
fn in_region(pt: (u8, u8), r: &Region) -> bool {
match r {
Region::Rect(c1, c2) => {
pt.0 <= u8::max(c1.0, c2.0)
&& pt.0 >= u8::min(c1.0, c2.0)
&& pt.1 <= u8::max(c1.1, c2.1)
&& pt.1 >= u8::min(c1.1, c2.1)
}
Region::Point((i, j)) => pt.0 == *i && pt.1 == *j,
}
}
fn create_dense_rectangle(c1: &(u8, u8), c2: &(u8, u8)) -> Vec<(u8, u8)> {
// Creates a vector of every point between two corners
let (c1, c2) = standardize_rectangle(c1, c2);
let mut points = Vec::<(u8, u8)>::new();
for i in c1.0..=c2.0 {
for j in c1.1..=c2.1 {
points.push((i, j));
}
}
return points;
}
fn standardize_rectangle(c1: &(u8, u8), c2: &(u8, u8)) -> ((u8, u8), (u8, u8)) {
let upper_left_i = u8::min(c1.0, c2.0);
let upper_left_j = u8::min(c1.1, c2.1);
let bottom_right_i = u8::max(c1.0, c2.0);
let bottom_right_j = u8::max(c1.1, c2.1);
return (
(upper_left_i, upper_left_j),
(bottom_right_i, bottom_right_j),
);
}
#[cfg(debug_assertions)]
use std::fmt;
use std::ops::Mul;
#[cfg(debug_assertions)] // There should be no reason to print a transfer otherwise
impl fmt::Display for TransferRegion {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "Source Plate:")?;
let source_dims = self.source_plate.size();
let source_wells = self.get_source_wells();
let mut source_string = String::new();
for i in 1..=source_dims.0 {
for j in 1..=source_dims.1 {
if source_wells.contains(&(i, j)) {
source_string.push_str("x")
} else {
source_string.push_str(".")
}
}
source_string.push_str("\n");
}
write!(f, "{}", source_string)?;
writeln!(f, "Dest Plate:")?;
let dest_dims = self.dest_plate.size();
let dest_wells = self.get_destination_wells();
let mut dest_string = String::new();
for i in 1..=dest_dims.0 {
for j in 1..=dest_dims.1 {
if dest_wells.contains(&(i, j)) {
dest_string.push_str("x")
} else {
dest_string.push_str(".")
}
}
dest_string.push_str("\n");
}
write!(f, "{}", dest_string)
}
}
#[cfg(test)]
mod tests {
use crate::data::plate::*;
use crate::data::transfer_region::*;
#[test]
fn test_simple_transfer() {
let source = Plate::new(PlateType::Source, PlateFormat::W96);
let destination = Plate::new(PlateType::Destination, PlateFormat::W384);
let transfer1 = TransferRegion {
source_plate: source,
source_region: Region::Rect((1, 1), (3, 3)),
dest_plate: destination,
dest_region: Region::Point((3,3)),
interleave_source: (1,1),
interleave_dest: (1,1),
};
let transfer1_map = transfer1.calculate_map();
assert_eq!(transfer1_map((1,1)), Some(vec!{(3,3)}), "Failed basic shift transfer 1");
assert_eq!(transfer1_map((1,2)), Some(vec!{(3,4)}), "Failed basic shift transfer 2");
assert_eq!(transfer1_map((2,2)), Some(vec!{(4,4)}), "Failed basic shift transfer 3");
let transfer2 = TransferRegion {
source_plate: source,
source_region: Region::Rect((1, 1), (3, 3)),
dest_plate: destination,
dest_region: Region::Point((3,3)),
interleave_source: (2,2),
interleave_dest: (1,1),
};
let transfer2_map = transfer2.calculate_map();
assert_eq!(transfer2_map((1,1)), Some(vec!{(3,3)}), "Failed source interleave, type simple 1");
assert_eq!(transfer2_map((1,2)), None, "Failed source interleave, type simple 2");
assert_eq!(transfer2_map((2,2)), None, "Failed source interleave, type simple 3");
assert_eq!(transfer2_map((3,3)), Some(vec!{(4,4)}), "Failed source interleave, type simple 4");
let transfer3 = TransferRegion {
source_plate: source,
source_region: Region::Rect((1, 1), (3, 3)),
dest_plate: destination,
dest_region: Region::Point((3,3)),
interleave_source: (1,1),
interleave_dest: (2,3),
};
let transfer3_map = transfer3.calculate_map();
assert_eq!(transfer3_map((1,1)), Some(vec!{(3,3)}), "Failed destination interleave, type simple 1");
assert_eq!(transfer3_map((2,1)), Some(vec!{(5,3)}), "Failed destination interleave, type simple 2");
assert_eq!(transfer3_map((1,2)), Some(vec!{(3,6)}), "Failed destination interleave, type simple 3");
assert_eq!(transfer3_map((2,2)), Some(vec!{(5,6)}), "Failed destination interleave, type simple 4");
}
#[test]
fn test_replicate_transfer() {
let source = Plate::new(PlateType::Source, PlateFormat::W96);
let destination = Plate::new(PlateType::Destination, PlateFormat::W384);
let transfer1 = TransferRegion {
source_plate: source,
source_region: Region::Rect((1, 1), (2, 2)),
dest_plate: destination,
dest_region: Region::Rect((2,2),(11,11)),
interleave_source: (1,1),
interleave_dest: (3,3),
};
let transfer1_map = transfer1.calculate_map();
assert_eq!(transfer1_map((1,1)), Some(vec!{(2, 2), (2, 8), (8, 2), (8, 8)}), "Failed type replicate 1");
assert_eq!(transfer1_map((2,1)), Some(vec!{(5, 2), (5, 8), (11, 2), (11, 8)}), "Failed type replicate 1");
}
#[test]
fn test_pooling_transfer() {
}
}